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1 Introduction

The Allen-Heine-Cardona (AHC) theory [1, 2, 3] is one of the current state-of-the-art methods to
study the effect of electron-phonon coupling (EPC) on electronic structures from first-principles
density functional theory (DFT) and density functional perturbation theory (DFPT). In this
note, we describe how to use the PHonon package to calculate electron self-energy within the
AHC theory.

2 Formalism for the Allen-Heine-Cardona theory

In this section, we list the formulae needed to calculate the electron self-energy. For the
derivation, consult the cited references.

2.1 Definitions

� M : number of bands in the “lower” subspace. Set by the number of bands in the NSCF
calculation (can be different from ahc nbnd)

� k : electron crystal momentum

� q : phonon crystal momentum

� n, n′, m : index for electron bands

� κ, κ′ : index for atoms

� α, α′ : index for Cartesian directions (x, y, z)

� µ, ν : index for phonon eigenmodes

� εnk : Kohn-Sham eigenvalue

� εF : Fermi energy

� ωqν : Phonon frequency

� Uκα,ν(q) : mass-scaled phonon eigenmodes
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Quantity Description Definition Output filename
εnk Electron energy at k - ahc etk iq#.bin
εmk+q Electron energy at k + q - ahc etq iq#.bin

gκαmn(k,q) First order e-ph matrix element Eq. (2) ahc gkk iq#.bin

D̃καα′

nn′ (k) Debye-Waller matrix element Eq. (3) ahc dw.bin

Fκακ′α′

nn′ (k,q) Matrix element for upper Fan self-energy Eq. (4) ahc upfan iq#.bin

Table 1: Quantities calculated in a ph.x run with electron phonon=‘ahc’.

Quantity Description Definition

ΣOSA
nn′k

Total self-energy in the
on-shell approximation (OSA) ΣDW,RIA + ΣFan,OSA

ΣDW,RIA
nn′k Debye-Waller self-energy in the RIA Eq. (8)

ΣFan,OSA
nn′k Total Fan self-energy in the OSA ΣFan, upper + ΣFan, lower,OSA

ΣFan,upper
nn′k Upper Fan self-energy Eq. (11)

ΣFan, lower,OSA
nn′k Lower Fan self-energy in the OSA Eq. (10), Eq. (13)

Table 2: Self-energies calculated and printed by postahc.x.

The mass-scaled phonon eigenmodes Uκα,ν(q) are normalized to satisfy∑
κ,α

[Uκα,µ(q)]∗Uκα,ν(q)Mκ = δµ,ν . (1)

2.2 Key equations

First, we define relevant matrix elements:

gκαmn(k,q) = 〈umk+q|∂qκαv̂KS|unk〉 , (2)

D̃καα′

nn′ (k) = i 〈unk|[∂Γκαv̂KS, p̂α′ ]|un′k〉 , (3)

and
Fκακ′α′

nn′ (k,q) =
〈
Q̂M,k+q(∂qκαunk)

∣∣∣∂qκ′α′ v̂KS

∣∣∣un′k

〉
. (4)

In Eq. (4), Q̂M,k+q is a projection to the subspace of M + 1-th or higher eigenstates:

Q̂M,k+q = Î −
M∑
n=1

|unk+q〉 〈unk+q| . (5)

In the dynamical AHC theory, the phonon-induced electron self-energy Σ(ω) which is a
function of the frequency ω, is written as a sum of the Fan and the DW self-energies [6]:

Σnn′k(ω) = ΣFan
nn′k(ω) + ΣDW

nn′k, (6)

ΣFan
nn′k(ω) =

1

Nq

∑
qν,m
κακ′α′

1

2ωqν

[gκαmn(k,q)]∗gκ
′α′

mn′ (k,q)U∗κα,ν(q)Uκ′α′,ν(q)

×
[

nqν + fmk+q

ω − εmk+q + ωqν + iη
+

nqν + 1− fmk+q

ω − εmk+q − ωqν + iη

]
, (7)
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ΣDW,RIA
nn′k =

1

Nq

∑
qν
καα′

1

2ωqν

(
nqν +

1

2

)
D̃καα′

nn′ (k,q)U∗κα,ν(q)Uκα′,ν(q). (8)

To calculate the Debye-Waller self-energy, we use the rigid-ion approximation(RIA).
To avoid a sum over a large number of high-energy empty bands, theFan self-energy is

approximated as a sum of “lower” and “upper” Fan self-energy. The upper Fan self-energy is
computed within the adiabatic approximation, ignoring the phonon frequency in the denomi-
nator. This approximation enables one to avoid the sum over infinite number of states using
the solution of the Sternheimer equation [4].

ΣFan
nn′k(ω) ≈ ΣFan, lower

nn′k (ω) + ΣFan,upper
nn′k (9)

ΣFan, lower
nn′k (ω) =

1

Nq

∑
qν

κακ′α′

M∑
m=1

1

2ωqν

[gκαmn(k,q)]∗gκ
′α′

mn′ (k,q)U∗κα,ν(q)Uκ′α′,ν(q)

×
[

nqν + fmk+q

ω − εmk+q + ωqν + iη
+

nqν + 1− fmk+q

ω − εmk+q − ωqν + iη

]
, (10)

ΣFan, upper
nn′k =

1

Nq

∑
qν

1

2ωqν

(nqν +
1

2
)

[ ∑
κακ′α′

Fκακ′α′

nn′ (k,q)U∗κα,ν(q)Uκ′α′,ν(q) + (n↔ n′)∗

]
. (11)

In Eq. (11), (n↔ n′)∗ means switching n and n′ and taking complex conjugate.
In postahc.x, we calculate the static self-energy using the on-the-mass-shell approximation

(OSA) where ω is set to the bare Kohn-Sham electron eigenvalue [7]. For off-diagonal self-
energy, the value of ω becomes ambiguous. In this case, we take the average of the two possible
cases:

ΣOSA
nn′k =

1

2
[Σnn′k(ω = εnk) + Σnn′k(ω = εn′k)] . (12)

This approximation affects only the lower Fan self-energy because the Debye-Waller and upper
Fan self-energy are static by definition.

ΣFan, lower,OSA
nn′k =

1

2

[
ΣFan, lower
nn′k (ω = εnk) + ΣFan, lower

nn′k (ω = εn′k)
]

(13)

3 Example: Electron-phonon renormalization of the in-

direct band gap of diamond

In this section, we describe how to calculate the phonon-induced renormalization of the indirect
band gap of diamond using PHonon. The script and reference output files for this example can
be found in PHonon/example/example19.

1. Run pw.x for the SCF calculation.

2. Run ph.x for a coarse q point grid.

3. Run q2r.x to calculate the force constants.
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Self-energy (Ry)
Debye-Waller

(Nq = 3)
Upper Fan
(Nq = 3)

Lower Fan
(Nq = 4)

Total

CBM 0.0215548 -0.0229979 -0.0116025 -0.0130456
VBM 0.0827887 -0.0691964 -0.0053126 0.0082797

Indirect gap -0.0612339 0.0461985 -0.0062899 -0.0213253

Table 3: Self-energy and indirect band gap renormalization of silicon at 300 K.

4. Run dvscf q2r.x for inverse Fourier transformation of the phonon potential.

5. Run pw.x SCF calculation again for the next NSCF calculation.

6. Run pw.x for the NSCF calculation at k points to calculate the self-energy.

To calculate both the indirect band gap, we need to calculate the self-energy for the VBM
and the CBM state. So, we do the NSCF calculation for two k points: (0.0, 0.0, 0.0) and
(0.365, 0.365, 0.0), in crystal coordinates.

Also, we set nosym=.true. and noinv=.true. to sample the whole Brillouin zone, not
the irreducible wedge, in the subsequent ph.x runs (See Sec. 4.1).

The number of bands in this NSCF calculation (M defined in Sec. 2.1) is the number
of bands in the “lower” subspace. High-energy bands that are not explicitly calculated
consist of the “upper” subspace. The contribution of the high-energy bands to the Fan
self-energy (“upper Fan” self-energy) is approximated using the solution of the Stern-
heimer equation [4].

7. Run ph.x with electron phonon=‘ahc’ and ldvscf interpolate=.true..

8. Run matdyn.x.

The q points in the input of matdyn.x must be identical to the q points of the previous
ph.x run. One can copy the q points from the dyn0 output.

9. Run postahc.x to calculate the self-energies.

10. Run ph.x with electron phonon=‘ahc’ and ldvscf interpolate=.true. at a finer
q-point grid.

Here, we set skip upperfan=.true. to use the “double-grid technique” (See Sec. 4.2).

11. Run matdyn.x for a finer q-grid.

The list of q points in the input of matdyn.x must be identical to the q points of the
previous ph.x run. One can copy the q points from the dyn0 output.

12. Run postahc.x with skip upperfan=.true. and skip dw=.true..

The calculated self-energy and indirect band gap renormalization at T=300 K is summarized
in Table 3. The Debye-Waller and the upper Fan self-energy is taken from the output of the
first postahc.x run with a coarse q-grid, while the lower Fan self-energy is taken from the
second postahc.x run with a finer q-grid. The calculated indirect band gap renormalization
at T=300 K is ∆Egap = −0.0213 Ry = −290 meV.
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Band gap renormalization at other temperatures can be obtained by setting temp kelvin

to different values and running postahc.x.
The parameters used in this example is far from convergence. To obtain a converged self-

energy, one must converge the size of the q-point grid in all three runs of ph.x and the smearing
eta used in postahc.x, as well as other usual convergence parameters in SCF calculations.

4 Technicalities related to the q-point sampling

4.1 Sampling only the irreducible wedge

One can calculate the diagonal self-energy at the Γ point using only the irreducible q points
by assigning appropriate weights. To do so, one needs to edit the source code of postahc.f90
where wtq (the weight of each q point) is hardcoded to 1/Nq.

For k points other than the Γ point, the symmetry operation rotates not only the q but also
the k vector. Hence, when sampling the q points only inside the irreducible wedge, one must
calculate the diagonal self-energy for all symmetry-equivalent k points and take an average.

To calculate the off-diagonal part of the self-energy, one must sample q points in the full
Brillouin zone. The reason is that the symmetry operation can change the phase of the wave-
functions.

Often, the most time-consuming step in calculating the electron self-energy is the self-
consistent calculation of the phonon potential. For computational efficiency, one should avoid
calculation of the phonon potential on the full q-grid by 1) performing DFPT calculations for q
points in the irreducible wedge of a given q-grid, 2) Fourier interpolating the phonon potentials
from q-grid to real space using dvscf q2r.x, and 3) calculating matrix elements on the full q-
grid (of the same size) using Fourier interpolation of phonon potential. This way, the potential
at the full q-grid is accurately unfolded from the phonon potentials at the irreducible wedge.
Note that dvscf q2r.x internally uses symmetry operations to unfold the phonon potential
from the irreducible wedge to the full grid.

4.2 Double-grid technique

The convergence of the self-energy with respect to the q-point sampling is known to be slow
and is dominated by the convergence of the lower Fan self-energy [5].

The computational bottleneck in the calculation of the AHC matrix elements is the calcu-
lation of the upper Fan term, which involves solving the the Sternheimer equation. In contrast,
calculation of gκαmn(k,q) for the lower Fan self-energy only involves simple matrix element cal-
culations.

Therefore, one can save considerable computational cost by calculating the rapidly-convergent
upper Fan self-energy at a coarse q-point grid and the slowly-convergent lower Fan self-energy
at a finer q-point grid. This method is called the “double-grid technique” for converging the
electron self-energy.

Note that although the calculation of the Debye-Waller self-energy is also cheap, one should
calculate it at the coarse grid, not the fine grid when using the double-grid technique. The
reason is that the convergence of the sum of the DW and the upper Fan self-energies is much
faster than the convergence of each term.
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